
Scrabble: A Fine-Grained Cache
with Adaptive Merged Block

Chao Zhang , Student Member, IEEE, Yuan Zeng , Student Member, IEEE,

and Xiaochen Guo ,Member, IEEE

Abstract—A large fraction of the microprocessor energy is consumed by the data movement in the system. One of the reasons is the

inefficiency in the conventional cache design. Cache blocks larger than a word are used in conventional caches to exploit spatial

locality. However, many applications only use a small part of a cache block before its eviction. Transferring and storing unused data

wastes bandwidth, energy, and limited cache space. Prior work on fine-grained caches can reduce data access and storage granularity

to reduce the amount of unused data. However, small data blocks typically require greater metadata and control overhead. Sharing the

common bits among tags of fine-grained blocks can reduce the metadata overhead but the constraints on which fine-grained blocks

can share tag bits can cause fragmentation. This work proposes scrabble, a fine-grained cache that can merge multiple non-contiguous

fine-grained blocks into a variable size merged block. The length of the shared tag is maximized to reduce the metadata overhead.

The space utilization is improved by supporting merged blocks with variable size. The control overhead can be reduced by moving

the merged block together from memory to the last level cache. For applications with poor spatial locality, Scrabble cache can achieve

more than 40 percent of performance improvement. Even for application with good spatial locality, the speedup is still more than

7 percent. In general, for an evaluated set of benchmarks, Scrabble cache achieves an average of 2.41� effective capacity over the

baseline cache with the same cache capacity which leads to a 16.7 percent performance improvement and an 11 percent on-chip

energy reduction. As compared to a state-of-the-art fine-grained cache, Scrabble cache achieves a 1.25� effective capacity, a

7.9 percent speedup, and a 5.8 percent on-chip energy reduction.

Index Terms—Fine granularity, energy efficiency, caches, data movement, effective capacity, cache utilization, tag sharing, index selection,

control overhead, bandwidth efficiency, variable size block, spatial locality, space utilization, data utilization

Ç

1 INTRODUCTION

DATA movement contributes to a large portion of the total
system energy consumption. The inefficiency of data

movement is rooted in the conventional memory hierarchy
design. Memory hierarchy designs have been following the
same design principle for decades, which is to hide themem-
ory latency assuming good locality. Conventional caches are
organized using fixed-size blocks (i.e., 32-128 B) to make use
of spatial locality. However, data-intensive workloads do
not always have good locality. Even for applications with
good locality, the benefit of large access granularity dimin-
ishes when running these applications on multicore process-
ors due to the increased contentions in shared cache. Data
over-fetching results in a waste of energy, bandwidth, and a
reduced effective capacity.

To avoid data over-fetching, many fine-grained caches
have been proposed [1], [2], [3], [4], [5], [6], [7], [8]. These
mechanisms adapt to application locality characteristics to
improve the data utilization and data movement efficiency.
However, the size of the metadata needs to be increased to
support data identification, state tracking, and replacement

at a smaller data granularity. Furthermore, moving fine-
grained data leads to a greater control overhead, which
causes longer queueing delay and consumes additional
energy. While keeping the total chip area the same, the data
capacity is reduced due to an increased metadata overhead.
To reduce the metadata overhead for fine-grained caches,
some fine-grained caches [9], [10], [11] share common bits in
the tag of multiple fine-grained blocks and store the remain-
ing private tag to identify each fine-grained block. These
designs increase the data utilization and reduce themetadata
overhead. However, the constraints on sharing the tag bits
reduce the space utilization.When there are not enough blocks
that share a fixed subset of the tag bits, the data in each
merged block cannot fill out the entire cache line. A low
cache space utilization reduces the effective capacity.

An ideal fine-grained cache should have 1) low metadata
and control overhead, 2) high data utilization (used data/
fetched data), and 3) high space utilization (fetched data/
data capacity) to maximize the effective capacity and data
movement efficiency. In this paper, a new fine-grained cache
named scrabble is proposed to systematically optimize for
effective capacity. The scrabble cache can store multiple non-
contiguous words together in a merged block for both L1 and
L2. The L2 merged block size varies dynamically to improve
the cache space utilization and the L1 merged block size is
fixed to maintain a low access latency. The length and posi-
tion of the private tag and the cache index are carefully

� The authors are with the Lehigh University, Bethlehem, PA 18015.
E-mail: {chz616, yuz615, xig515}@lehigh.edu.

Manuscript received 22 Nov. 2018; revised 26 Apr. 2019; accepted 16 Aug.
2019. Date of publication 6 Sept. 2019; date of current version 19 Dec. 2019.
(Corresponding author: Chao Zhang.)
Recommended for acceptance by A. Gordon-Ross.
Digital Object Identifier no. 10.1109/TC.2019.2939809

112 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 1, JANUARY 2020

0018-9340� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on February 26,2020 at 14:06:23 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7892-5113
https://orcid.org/0000-0002-7892-5113
https://orcid.org/0000-0002-7892-5113
https://orcid.org/0000-0002-7892-5113
https://orcid.org/0000-0002-7892-5113
https://orcid.org/0000-0002-5550-9379
https://orcid.org/0000-0002-5550-9379
https://orcid.org/0000-0002-5550-9379
https://orcid.org/0000-0002-5550-9379
https://orcid.org/0000-0002-5550-9379
https://orcid.org/0000-0001-7704-0412
https://orcid.org/0000-0001-7704-0412
https://orcid.org/0000-0001-7704-0412
https://orcid.org/0000-0001-7704-0412
https://orcid.org/0000-0001-7704-0412
mailto:

selected to optimize for themerging efficiency.Multiple fine-
grained blocks in the same merged block share the common
tag bits and are stored and transferred together to amortize
the control overhead.

This paper makes the following contributions:

� Improving the cache space utilization by caching
non-contiguous words with variable size merged
blocks.

� Maximizing the merging and tag sharing possibility
by a private tag and index selection scheme.

� Reducing the control overhead by fetching fine-
grained blocks within a merged block together from
memory to cache through grouped line-fill.

2 BACKGROUND AND RELATED WORK

The scrabble cache is built upon and inspired by prior work
on fine-grained caches. This section summarizes these fine-
grained caches and their remaining issues.

2.1 Effective Capacity

The primary design goal of fine-grained caches is to increase
the effective capacity of on-chip storage and thereby reduce
cache misses and off-chip data movement. The effective
capacity is the cache space that stores useful data. Effective
capacity can be calculated using the following equation:

EffectiveCapacity ¼ DataCapacity

� SpaceUtilization�DataUtilization:

Under a fixed area, the lower the metadata overhead, the
higher the data capacity. Cache space utilization quanti-
fies the amount of valid data stored in the data array.
Data utilization quantifies the amount of used data as a
percentage of valid data before eviction. As shown in
Table 1, The proposed Scrabble cache targets the best
trade-off among metadata overhead, space utilization,
and data utilization.

2.1.1 Data Utilization

Data utilization is the ratio of the useful data to the fetched
data. Conventional caches have low data utilization
because a fixed size of contiguous data is fetched regard-
less of spatial locality. Reducing the size of the cache block
can improve the data utilization but can also degrade per-
formance for applications or program phases that have

good spatial locality. Amoeba cache [8] keeps the tag in
the data array for storing different sizes of cache blocks. A
tag-bitmap is required per set to indicate where are the
tags stored. Each of the tags has the size of one word (64
bits) no matter how many words are stored in a fine-
grained block. Amoeba cache requires more storage for
the tag. Therefore, Amoeba cache has an increased data
utilization but a decreased data capacity as compared to
the conventional cache. Moreover, Amoeba cache [8] can
only fetch contiguous words from a physical block, which
prevents further improvement of data utilization. Line dis-
tillation [2] combines line-organized cache with the word-
organized cache to keep useful words in cache on evic-
tions. The utilization of cache capacity is improved but
each cache line needs to be first placed in the line-orga-
nized cache, which can not improve the data movement
efficiency when cache lines are initially fetched. Spatial
prefetching [4] improved the data utilization by skipping
the unused words, but for applications with poor or vari-
able spatial locality, this design still wastes cache space
and bandwidth. Word organized cache [5] improves
cache utilization, bandwidth, and energy consumption.
However, 50 percent of space is used to store tags. In
Scrabble cache, non-contiguous data from the same block
or different blocks can be merged into one block, which
improves data utilization without adding significant meta-
data overheads.

2.1.2 Metadata Overhead

The conventional cache uses relatively large block to minimize
the metadata, which includes tag, valid bit, LRU bits. Fine-
grained caches reduce the size of the cache blocks to avoid
over-fetching when application do not have good locality.
However, fine-grained caches typically require a higher meta-
data overhead as compared to the conventional cache.
Decoupled sector cache (DSC) [3] can reduce metadata over-
head and improve cache utilization by allowing multiple sec-
tors to share cache space. In this design, tag array is indexed
by selection tag and index, whereas the data array is indexed
by index and sector offset. Therefore, multiple blocks which
have the same index but different selection tags can be stored
in the same set. Selection tags are required to be stored in the
data array for identifying blocks in the data array and finding
the corresponding tags in the tag array. Elastic cache [9] shares
the common bits in the tag as the shared tag for multiple fine-
grained blocks. The metadata can be effectively reduced.
However, the Elastic cache cannot change the granularity of
the fine-grained blocks at the runtime, which hurts perfor-
mance for applications that have good locality. Tag-Split
cache [10] and DyCache [11] use a similar technique to share
the MSB of the tag among multiple fine-grained blocks. They
can adaptively choose the granularity of the fine-grained
blocks based on the spatial locality. Tag-Split provides fine-
grained modes and coarse-grained mode selection. it samples
a number of cache sets to determine the operating mode.
However, the sampler sets cannot change their operating
mode. Upon the granularity changing, DyCache has to flush
all of the cache blocks. In Scrabble cache, multiple fine-grained
blocks can be merged into a variable-size merged block.
Increasing the number of blocks that can be merged reduces

TABLE 1
Comparisons of Different Cache Designs

Designs Metadata
Overhead

Space
Utilization

Data
Utilization

Conventional Low High Low
Word cache [5] Very High High High
Line distillation [2] High High High
Amoeba cache [8] High High High
DSC [3] Very Low High Low
Elastic cache [9] Medium Low High
Tag-Split cache [10] Medium Low High
DyCache [11] Medium Low High
This work Medium High High

ZHANG ET AL.: SCRABBLE: A FINE-GRAINED CACHEWITH ADAPTIVE MERGED BLOCK 113

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on February 26,2020 at 14:06:23 UTC from IEEE Xplore. Restrictions apply.

the metadata overhead. The private tag and index are care-
fully selected to maximize the length of the shared tag.

2.1.3 Cache Space Utilization

Cache space utilization is the ratio of the fetched data to the
data capacity. For the conventional cache, the cache space
utilization is typically 1 because the fetching granularity
equals to the allocation granularity. For fine-grained caches
that merge multiple fine-grained blocks with shared com-
mon tag bits [9], [10], [11], all of the fine-grained blocks
must have the same shared tag and index to be merged. A
merged block may not be completely filled and therefore
can waste cache space and reduce the cache space utiliza-
tion. Due to fragmentation, fine-grained caches might need
to evict existing blocks for a new block allocation even if it
has enough space. Scrabble cache increases the cache space
utilization by adaptively selecting the sizes of the merged
blocks. When not enough fine-grained blocks can be
merged, the size of the merged block is decreased to reduce
wasted space. Moreover, Scrabble cache can allocate non-
contiguous space in a set for one merged block, which can
effectively mitigate the fragmentation problem.

2.2 Control Overhead

Fine-grained cache has a reduced block size. A cache access
can hit in the original physical block but miss in the partial
block. When this kind of partial miss occurs, the fine-grained
cache needs to fetch the missing part of the physical block [8],
[10]. As a result, the control overhead for fine-grained caches
is typically higher as compared to it is in the conventional
cache. To reduce partial misses, a better prediction mecha-
nism is required. Prior work uses spatial pattern predictor
[4], [8], [12] to determine the size of a contiguous range of
data that will be used. Scrabble cache improves the prediction
accuracy by allowing non-contiguous predictions. Hence,
Scrabble reduces control overhead due toon partial misses.

Another type of control overhead happens when refilling
fine-grained blocks. To fill the same amount of the data,
fine-grained caches require more line-fill operations. The
control signals and the queuing delay of writing these fine-
grained blocks are increased. This work is the first to
address this issue by grouping multiple fine-grained blocks
into one merged block and write it within one line-fill. The
control overhead can be reduced by using the same set of
control signals.

3 KEY IDEAS AND DESIGN OVERVIEW

Scrabble cache aims to optimize the effective cache capacity
and control overhead. This section presents the key ideas
and an overview of Scrabble cache.

Private Tag and Index Selection. Sharing the common bits
in the tag among multiple fine-grained blocks can effec-
tively reduce the metadata overhead. However, fine-grained
blocks that can be merged must have the same index bits as
well as shared tag bits. Prior works [9], [10], [11] keep the
position of the index bits the same as the conventional cache
and choose the LSBs of the original tag bits to be the private
tag of each fine-grained blocks. In this type of tag and index
selection, fine-grained blocks that are accessed back-to-back
tend to be mapped to different cache set and lose merging
opportunities. As a result, the merged blocks tend to have
low space utilization. To overcome this problem, the private
tag should choose the bits with the higher variations in the
address; whereas the shared tag and index should have
lower variations. However, selecting the index bits with
lower variations increases load imbalance among cache sets
and hence increases the conflict misses. In Scrabble cache,
the private tag bits are chosen from the LSBs of the address
bits except for the block offset. Then, the index bits are cho-
sen from the rest of the LSBs. TheMSBs are selected to be the
share tag. A hash function that XORed the LSB of the shared
tag and the index bits is used to mitigate the load imbalance
problem among sets [13].

Variable Length Merged Block. For different data regions
and different application phases, the spatial locality varies
and the number of the fine-grained blocks that can be
merged is different. Keeping a fixed sized merged block
cannot maximize the merging efficiency. A large merged
block can accommodate more fine-grained blocks if they
have the same shared tag and index. Therefore, using large
merged block can reduce the metadata overhead and maxi-
mize the tag bits sharing. However, there may not always
be enough blocks to be merged. A small merged block can
reduce the unused space and improves the space utilization.
Therefore, Scrabble cache allows variable size merged block.

The variable length merged block has advantages over
the previous cache design when the locality is not good.
Fig. 1 shows an example of how the fetched data are orga-
nized in different cache design. In this example, the conven-
tional cache has a fixed 64 B block size which can only store
contiguous words. After fetching useful data A-F, the cache

Fig. 1. Comparison of the data organization for conventional cache, Amoeba cache, Elastic cache, and Scrabble cache with an example data access
pattern (A, B, C, ...). All of the blocks in the figure have the same index. Each of the grey block and the labeled black block is 16B.

114 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 1, JANUARY 2020

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on February 26,2020 at 14:06:23 UTC from IEEE Xplore. Restrictions apply.

set is full. Future misses will cause block eviction. Amoeba
cache avoids fetching some non-useful words by using
variable length blocks. However, since this design can
only store contiguous words, when the first and the last 16
B of a block are useful (E, F), Amoeba fetches the entire
block. The elastic cache can merge non-contiguous words
that have the same shared tag into a merged block, which
avoids fetching non-useful data. However, because the
merged block has a fixed length, some allocated cache
space is not filled. Scrabble cache can merge non-contigu-
ous words while having blocks with variable length. In the
example, A-F with shared tag1 are stored in a 96 B merged
block1. G-J, K-L, M-P are stored in merged blocks with size
64 B, 32 B, and 64 B, respectively. More design details will
be discussed in Section 4. Fig. 1e compares the size of the
useful data, fetched but not used data, allocated but not
filled space, and the metadata size of the four cache design
with the same allocated data storing space. Among all of
the listed cache designs, Scrabble has the highest percent-
age of the useful data over the allocated cache space with
moderate metadata overhead, which means it has the high-
est effective capacity.

Grouped Line-Fill. For fine-grained caches, the total con-
trol overhead of placing the same amount of data into the
cache is higher as compared to it is in the conventional
cache. In Scrabble cache, multiple fine-grained blocks are
merged together at the memory controller. The control over-
head can be amortized by using the same set of control sig-
nals to write multiple fine-grained blocks.

In Scrabble cache, supporting merged blocks with vari-
able length can improve the effective capacity and thereby
reduce the miss rate. However, additional logic and tag bits
should be added, which increases the cache access time.
Therefore, in the proposed design, the L1 cache has a fixed
merged block size to maintain low access delay; whereas
the L2 cache has merged blocks with variable length to
improve effective capacity and reduce the miss rate.

An overview of Scrabble cache is shown in Fig. 2. Both L1
and L2 caches can store merged blocks. In a 4-way L1 cache,
each set stores 32 words in four fixed 64 B block. Four shared
tags, 32 private tags, and 32 word tags are used to uniquely
identify the data. For an 8-way L2 cache, the number of the

merged blocks in one cache set can vary from one to sixteen.
To identify eachmerged block, 16 shared tags are required to
support the maximum number of merged blocks (if they are
all 32 B), which leads to a large metadata overhead. To
reduce the overhead, Scrabble cache limits the number of
merged blocks such that the number of the shared tag is the
same as the number of tags in the conventional cache. In
the proposed L2 cache, 8 shared tag, 16 merged blockIDs,
64 private tags, and 64 word tags are stored in the tag array.
The merged blockIDs are used to indicate which shared tag
should be used for each 32 B space in the data array. This
mechanism allows non-contiguous cache space be allocated
to one merged block. In the worst case, all of the merged
blocks are 32 B and half of the set space can be empty. Fortu-
nately, 84 percent of the merged blocks have the size greater
than 64 B for the evaluated applications. Data transferring
between L1 and L2 is chosen to be physical block granularity.
A study on the data movement between L1 cache and the L2
cache is shown in Section 7.3. A spatial pattern predictor is
located at the memory controller and trained by the eviction
information. Themerge logic in thememory controller deter-
mines which partial blocks can be merged together and the
sizes of eachmerged block.

When cache accesses miss in the L2 cache, �1 the read
requests are first sent to the spatial pattern predictor. �2 The
spatial pattern predictor generates a bitmap for each read
request and the bitmaps are stored in the transaction queue.�3
The merge logic determines which requests can be merged
and the sizes of each merged block. �4 When all of the data
from merged block1 are returned to the data buffer, the
merged block is sent back to the cache together.�5 Similarly,
a merged block2 with different size is sent to the L2 cache.
If there is a miss in the L1 cache, but hit in the L2 cache, �6
All the data from the same physical block in the same
cache set will be transferred to L1 cache instead of the entire
merged block.

4 SCRABBLE CACHE

To implement the ideas discussed in Section 3, modifica-
tions to the cache hierarchy and the memory controller are
required.

Fig. 2. Scrabble cache design with 16 private 4-way L1s and a shared 8-way L2 cache.

ZHANG ET AL.: SCRABBLE: A FINE-GRAINED CACHEWITH ADAPTIVE MERGED BLOCK 115

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on February 26,2020 at 14:06:23 UTC from IEEE Xplore. Restrictions apply.

4.1 Private Tag and Index Selection

To reduce the metadata overhead and improve the block uti-
lization: length of the private tag and the position of the index
bits must be carefully determined. Fine-grained blocks must
have the same shared tag and index to be merged together.
To increase merging possibility, the shared tag and index
should be chosen from the address bits that have lower varia-
tions (i.e., LSB) and the private tag should be selected from
the ones with higher variations (i.e., MSB). As shown in
Fig. 3, the first n LSBs after block offset are selected to be the
private tag. The following LSBs are used as the index to allow
load balancing among cache sets. The MSBs are used as the
shared tag. To reserve the bits with the highest variations to
be the private tag, the index bits are shifted towards left,
which may cause the cache to have load imbalance. To miti-
gate this problem, a modified cache index is calculated by
XORing the LSB of the shared tag and the index. This new
index scheme can effectively reduce the conflict misses with-
out reducing the number of fine-grained blocks that can be
merged. The length of the private tag is chosen to be six bits.
A detailed discussion about choosing the length of the private
tag is in Section 7.1.

4.2 Merge Logic

To improve the control efficiency, partial blocks are merged
at the memory controller based on the predicted spatial pat-
tern and the merged partial blocks are written back
together. The spatial pattern predictor design will be dis-
cussed in Section 4.4. To support the dynamic merge archi-
tecture, additional circuits are required in the memory
controller, which are shown in Fig. 4:�1 an MSign and a bit-
map per transaction queue entry to indicate whether a block
has been merged and to store spatial patterns; �2 a merge
logic to determine which blocks are merged together; �3 a
merge map to record the merge logic results and data return
information; and �4 a return logic to determine whether a
merged block is ready to be sent back to the cache.

Memory controller typically requires scheduling logic
(e.g., FR-FCFS) to choose the ready command with the high-
est priority, which already requires search capability in a
transaction queue and a priority encoder to pick the highest
priority request from multiple ready candidates. In the pro-
posed design, the largest merged block size at the memory
controller is 128 B 1 and amaximumof 16 fine-grained blocks
can bemerged into one block. A request selected to be served
searches the transaction queue for other requests with the
same shared tag and index. The priority encoder in themem-
ory controller selects one request per cycle and it takes up to
16 cycles to find all of the candidate blocks. When the mem-
ory controller needs to use the search port and priority

encoder, the merge logic is paused, which happens rarely
because the average number of blocks that have the same
index and shared tag is less than four. While the bitmaps of
each candidate block are buffered, the merge logic starts to
determine the size of the merged block. The algorithm to
generate a merged block is shown in Algorithm 1. The input
of the algorithm is 16 8-bits bitmaps from up to 16 mergeable
blocks. The output is 16 valid bits which indicate the merged
block lengths and 16 MSigns. MSigns for merged candidates
are set to one in the transaction queue to avoidmerging them
again. The merge algorithm counts the number of valid bits
for each merging candidates. If the remaining space of a
merged block is larger than the number of valid bits of a can-
didate, the candidate is merged and the remaining space is
updated. The corresponding MSigns and valid bits are
updated too.

Algorithm 1.Merge Algorithm

1 Input:map[16][8]
2 Output: valid[16], MSign[16]
3 Initial: valid[16]=0, MSign[16]=0, N=0, space=16, p=0
4 for i 0 to 16 do
5 for j 0 to 7 do
6 if map[i][j] then
7 N++
8 end
9 end
10 whileN <¼ space do
11 MSign[i]=1
12 for k 0 toN do
13 valid[p+N]=1
14 end
15 p+=N
16 space-=N
17 end
18 end

Part �2 in Fig. 4 shows an example of merging 14 words
from six fine-grained blocks. After the merged result is

Fig. 3. Private tag selection.

Fig. 4. An illustration of the memory controller logic (the shaded
components are new hardware).

1. This is different from the largest merged block in cache because
merging can also happen during refills when two merged blocks in a
set have the same shared tag.

116 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 1, JANUARY 2020

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on February 26,2020 at 14:06:23 UTC from IEEE Xplore. Restrictions apply.

generated, a new entry will be added into the merge map to
store the data return status, cache index, and shared tag for
the merged block. One valid bit and one return bit are
assigned for each word in the merged block. Return bits are
set to all zeros initially. Each time a new data is fetched
from the DRAM to the data buffer, the merge map will be
checked. If hit, the corresponding return bit of that data will
be set to one. if all of the valid words are returned, the
merged block can be sent back to the cache together. The
first returned fine-grained block in a merged block has to
wait for the rest of the merged block. In order to reduce the
waiting time, the FR-FCFS scheduling policy is modified to
prioritize fine-grained blocks that are determined to be
merged.

According to the synthesis results in Section 6, the merg-
ing logic takes up to 18 cycles to make merging decision
(including the 16 cycle selection). The merging logic can be
considered as one additional pipeline stage before accessing
to DRAM. The best-case throughput of the merging logic is
when merging 16 fine-grained blocks in 18 cycles, whereas
the worst-case throughput is when merging two fine-
grained blocks in four cycles. Since the maximum DRAM
throughput is 1/tBURST , which is smaller than the worst-
case merging throughput, merging will not hurt the system
throughput. Latency, area, and power overhead of the addi-
tional hardware to support the merge capability is shown in
Section 6.

4.3 Cache Lookup

To support the proposed variable size merged block, the
cache lookup logic needs to be modified. In a conventional
cache, a cache block can be uniquely identified by its tag
stored in a cache set. In Scrabble cache, each word can be
uniquely identified by the shared tag concatenated with the
private tag and wordID. On a cache lookup, word hit is
when all three parts match between the request and a stored
word. In addition to the word hit, the cache lookup logic
needs to support a block hit, which requires a match for both
the shared tag and the private tag. Block hit is used to read
all partial blocks belonging to a physical block (Sections 4.5
and 4.6).

Fig. 5 shows an example of the tag comparison logic for
an 8-way set-associative cache. Each merged block has a
shared tag. Each word has its own private tag, wordID, and
valid bit. A merged block can be stored non-contiguously in
a cache set (e.g., block1 in Fig. 5). Therefore, a

mergedBlockID is needed for each word to identify which
merged block it belongs to. Since the smallest merged block
size is 32B, every four words share a mergedBlockID. In the
given example, mergedBlockID1 ”000” indicates that the
first 32 B in the data array corresponds to the first shared
tag. The third 32 B in the data array has the same merged-
BlockID, and hence is in the same merged block as the first
32 B.

Cache lookup for a word can be broken down into five
steps: �1 index to a set; �2 check whether the shared tag
matches; �3 check whether the private tag and the wordID
matches for each word, which happens in parallel with step
two; �4 identify the shared tag based on the mergedBlockID;
�5 check whether a word has matched shared tag, private
tag, and wordID (when doing the block search, the block
search signal is set to one and the words are always hit);
and �6 read out the words on hit. For the L1 cache, which
has a fixed merged block size, step�4 is removed.

Area, latency, and energy overhead are estimated by syn-
thesizing the logic and adding tag storage overhead in the
cache models. As compared to the conventional cache
lookup, Scrabble cache requires more gates to support
simultaneous comparison for the shared tag, the private
tag, and the wordID of the merged block. Additional logic
latency is added to the critical path for checking whether all
of the metadata match (step �5). Synthesize results in
Section 6 show that the additional latency can fit in the
same cycle of a conventional L1 lookup. For L2 cache, the
latency is longer. Because supporting variable size merged
block requires shared tag identifying (step �4), which takes
a longer time and is on the critical path. However, results in
Section 6 show that the overhead is tolerable.

4.4 Spatial Pattern Predictor

When a cache miss happens, Scrabble cache only fetches
partial blocks that are predicted to be accessed. Different
spatial pattern predictors (SPP) [4], [8], [12], [14], [15] could
be used to generate the word access patterns within a block.
Scrabble cache uses a table-based SPP. Because the same
type of data objects are typically allocated in a contiguous
address space and tend to exhibit a similar spatial behavior,
each entry in the table stores the spatial pattern of a contigu-
ous memory address region. Word access information is
recorded by adding one reference bit per word in the L1 tag
array. This section introduces how SPP works in Scrabble

Fig. 5. An example of cache lookup in an 8-way cache with variable size merged blocks.

ZHANG ET AL.: SCRABBLE: A FINE-GRAINED CACHEWITH ADAPTIVE MERGED BLOCK 117

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on February 26,2020 at 14:06:23 UTC from IEEE Xplore. Restrictions apply.

cache. Detailed trade-offs of different SPP design choice is
analyzed in Section 7.2.

In Scrabble cache, SPP is updated on L1 evictions and
read on L2 misses. An example is shown in Fig. 6. �1 Word
access information is updated on each L1 access in the tag
array. �2 When a merged block is evicted from L1, the
recorded access pattern is decoded into a bitmap. In this
example, word 0 in physical block 0, word 0 in physical
block 1, and word 3 in physical block1 are referenced, there-
fore bit 0 and bit 3 are one in the decoded bitmap. �3 The
decoded bitmap is used to update the corresponding entry
in the pattern history table at the memory controller. �4 On
an L2 miss, the regionID of the missed address is used to
search the spatial pattern. �5 If the regionID hit in the PHT,
the prediction bitmap will be read out. Otherwise, a whole
block is fetched. In Scrabble cache, the SPP is located in the
memory controller. Therefore, required partial blocks can
be merged and moved to cache together to reduce the con-
trol overhead and data movement energy. The overhead for
SPP is evaluated in Section 6.1.

4.5 Cache Refill and Replacement Policy

In Scrabble cache, the number of merged block is fewer than
or equal to the number of cache ways. Words within a
merged block are always evicted together. Therefore, no
additional LRU bits are needed. If a merged block is not
full, it can be refilled by an incoming mergeable block. A
new refill logic is needed to support this function. As shown
in the Fig. 7, �1 the refill logic checks whether there is a
shared tag hit for a returned merged block. If not, a new
cache line is allocated. If an existing merged block with a
matching shared tag is found, �2 the refill logic checks
whether the existing merged block has enough space. If it
does, the new merged block can be refilled to the existing
merged block. If space is not enough, �3 refill the existing
merged block and allocate a new cache line for the remain-
ing words. L2 cache has variable size blocks. Therefore, allo-
cating space for a new merged block may require an
eviction of multiple merged blocks. Merged blocks are
evicted based on the LRU policy, if an evicted block does
not provide enough space, the next LRU block will be
evicted. In Scrabble cache, up to four merged blocks may be
evicted to allocation space for a new merged block. Refill
logic shares hardware with the cache lookup logic. The only
major overhead is the counter for calculating the remaining
space for each merged block. The refill logic overhead is
reported in Section 6.

4.6 Coherence and MSHR

Scrabble cache can adopt many existing coherence protocols
[16], [17], [18], while maintaining the coherent metadata at
original physical block granularity.

For example, Protozoa [18] is designed for variable gran-
ularity cache block. This work keeps the metadata at a con-
ventional fixed cache block granularity while supporting
variable read and write caching granularity.

In this paper, Scrabble cache uses a directory-based
coherence protocol that is the same as it is in the baseline
system. Similar with the Amoeba cache [8] , the coherence
granularity and directory information are maintained at the
original physical block size. Multiple cores can cache differ-
ent partial blocks from the same physical block in shared
state. Merging different partial blocks does not create any
new false sharings or remove any existing ones. This allows
the programmers to optimize program behaviors based on
conventional cache blocks.

The proposed architecture requires minimum modifica-
tions to the MSHRs. In the conventional MSHRs, once a pri-
mary miss occurs, the block address is added to the MSHR.
If there are multiple misses on the same block, these misses
are recorded in the address stack. After the block returns,
the MSHR entry and the associated address stack entries
can be invalidated. For Scrabble cache, the challenge is that
after the partial block returns, it can not guarantee that all of
the misses in the address stack are satisfied by the returned
partial block. In the proposed design, the MSHR entry will
be recycled only when the returned bitmap can cover all of
the misses in the address stack. When any of the associated
address stack entry is not satisfied, the corresponding
MSHR entry cannot be recycled. An unsatisfied secondary
miss becomes the primary miss and issues a read request to
the lower level of the cache hierarchy. This inefficient
MSHR operation rarely happens because the spatial pattern
predictor has a low false negative rate (Section 7.2.4).

5 EXPERIMENT SETUP

This work compares the following fine-grained caches with
the conventional cache:

� Amoeba: a fine-grained cache that stores tag in data
array [8].

� mDSC: a modified decoupled sector cache [3] with
64 B sector size and 8 B line size with the same SPP
in Amoeba cache.

� Elastic cache: a fine-grained cachewith tag sharing [9].
� Scrabble (fixed): the proposed Scrabble cache with

64 B fixed block size for both L1 and L2.

Fig. 7. Scrabble cache refill and replacement.
Fig. 6. Spatial pattern predictor.

118 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 1, JANUARY 2020

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on February 26,2020 at 14:06:23 UTC from IEEE Xplore. Restrictions apply.

� Scrabble (variable): the proposed Scrabble cachewith 64B
fixed block size for L1 and variable size block for L2.

To be fair, the total storage for tag and data is kept the
same among all of the evaluated caches at the same level of
the memory hierarchy. The baseline configuration is listed
in Table 2. The configurations of the fine-grained caches are
listed in Table 3.

5.1 Circuit and Architecture

A modified SESC simulator [21] is used with a cycle-accu-
rate memory simulator to evaluate the systems. CACTI
7.0 [22] is used to model the cache access latency, energy,
and area. Cadence Encounter RTL Compiler [23] is used to
synthesize all of the additional logics to estimate the timing,
power, and area overhead. NanGate FreePDK45 open cell
library [24] is used and the results are scaled from 45 nm to
22 nm technology node according to the parameters
reported in [25].

All of the DRAM parameters are from the datasheet of a
SAMSUNG 4 Gb DDR4 device [20]. CPU model parameters
are from the Intel Xeon Processor Scalable Family datasheet
[19] with a reduced L2 cache capacity to accommodate the
small working set size of the simulated workloads [26].
McPAT [27] is used to estimate power consumption of the
rest of the system. The L1-L2 and L2-memory controller
interconnection energy are estimated to be 6.8pJ per Byte
transfer [28]. The total on-chip power calculation includes
L1 caches, L2 cache, L1-L2 interconnect, L2-memory con-
troller interconnect, memory controller, and cores power.

5.2 Applications

26 applications (Table 4) from a variety of benchmark suites
are used in the evaluation: HPCC [29], SPLASH-2 [30],
SPEC-OMP [31], SPEC2006 [32], NAS-OMP [33], and Man-
tevo [34]. These applications are divided into multi-thread
and multi-program groups, which exhibit a wide range of
spatial locality. Totally one billion instructions are simu-
lated for selected simulation points [35] of each of SPEC
applications. 16 copies of each SPEC applications are simu-
lated on the 16-core system.

6 EVALUATIONS

This section presents evaluations of circuit overhead, per-
formance, energy, and effectiveness of Scrabble cache.

6.1 Area, Latency, and Power Overhead

The proposed architecture requires additional circuits in
caches and memory controller. The overhead is summarized
in Table 5. As compared to the total cache area (1 mm2 for 16
L1 caches and 9mm2 for an L2 cache), the total area overhead
for L1 and L2 is 0.3 percent. L1 lookup can fit in the same
cycle as the conventional L1 does. The additional latency of
scrabble comes from one OR gate delay. The synthesis tool is
able to adjust the other gates on the critical path to fit the OR

TABLE 2
Baseline Configuration

System

16 cores, 32 threads, 2.2 GHz, 22 nm node [19]
OoO, SMP, issue width = 4
L1i: 64 KB, direct-map, 64 B block

Cache

L1d: 64 KB: 4-way LRU, 64 B block
miss delay = 1 cycle, hit delay = 1 cycle

L2: 8 MB, 8-way LRU, 64 B block
miss delay = 3 cycles, hit delay = 5 cycles

Memory

FR-FCFS scheduler

Controller

open-page policy
4 Gb x8 I/Os, DDR4-2400 17-17-17 [20]
16 banks, 4 channels, 2 ranks

DRAM

1 KB page size per chip (Baseline)
tRC = 55cycles, tRAS = 38cycles
tRP = 17cycles, tCAS = 20cycles

TABLE 3
Fine-Grained Cache Configurations

L1 Cache

2.1 KB(T&V) + 67.9 KB(tag&data) = 70 KB
Amoeba miss delay = 1 cycle, hit delay = 1 cycle

10.96 KB(tag) + 59.04 KB(data) = 70 KB
Modified DSC miss delay = 1 cycle, hit delay = 1 cycle

11.25 KB(tag) + 58.75 KB(data) = 70 KB
Elastic cache miss delay = 1 cycle, hit delay = 1 cycle

11.4 KB(tag) + 58.6 KB(data) = 70 KB
Scrabble miss delay = 1 cycle, hit delay = 1 cycle

L2 Cache

0.3 MB(T&V) + 8.3 MB(tag&data) = 8.6 MB
Amoeba miss delay = 6 cycles, hit delay = 6 cycles

1.21 MB(tag) + 7.39 MB(data) = 8.6 MB
Modified DSC miss delay = 4 cycles, hit delay = 6 cycles

1.3 MB(tag) + 7.32 MB(data) = 8.62 MB
Elastic cache miss delay = 4 cycles, hit delay = 6 cycles

1.3 MB(tag) + 7.32 MB(data) = 8.62 MB
Scrabble miss delay = 4 cycles, hit delay = 6 cycles

TABLE 4
Applications

Benchmarks Suite Input

Multi-thread

CG,MG NAS OpenMP Class A
FFT SPLASH-2 1M points
OCEAN SPLASH-2 514 x 514 ocean
CHOLESKY SPLASH-2 Reference
WATER-NSQUARED SPLASH-2 Reference
WATER-SPATIAL SPLASH-2 Reference
RADIX, LU SPLASH-2 Reference
SWIM, ART SPEC OpenMP MinneSpec-Large
HPCCG,miniAMR Mantevo Default
GUPS HPCC Default

Multi-Program

LIBQUANTUM,
GOBMK, SOPLEX,
OMNETPP,
DEALII,MILC, SPEC 2006 Reference
LBM,GCC,
ASTAR,MCF,
SJENG, Xalan

ZHANG ET AL.: SCRABBLE: A FINE-GRAINED CACHEWITH ADAPTIVE MERGED BLOCK 119

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on February 26,2020 at 14:06:23 UTC from IEEE Xplore. Restrictions apply.

gate delay. L2 lookup adds an additional 52.3 ps latency,
which leads to one cycle additional access time as compared
to conventional cache. The total on-chip area overhead for
Scrabble is less than 0.16 percent of the 55.8 mm2 processor
chip area. And the total power overhead is less than 0.45 per-
cent of the 77.86W total on-chip peak power.

6.2 Performance

Tounderstand the performance of Scrabble, in this section, the
merged block utilization, the L1 and L2 miss rate, the frag-
mentation issue, and the speedup contribution are discussed.

Block Utilization. Scrabble cache can avoid fetching and
storing useless data. As compared to baseline, average block
utilization before its eviction for both L1 and L2 is improved
from the 30 percent to 87.3 percent as shown in the Fig. 8.
Across all of the evaluated applications, Scrabble cache can
significantly improve the block utilization by merging non-
contiguous data into variable size blocks.

Miss Rate. The increased block utilization leads to a lower
miss rate. For applications that have low spatial locality, the
L1 and L2 misses per kilo instructions (MPKI) can be
reduced by 29.1, and 27.2 percent respectively (Fig. 9). This
is because Scrabble cache can improve the effective capacity
(Section 6.4). Even for applications with good locality (lbm
and astar e.g.,) the L1 and L2 MPKI can still be reduced by
8.4 percent. For some applications with low block utilization
(mcf e.g.,) increasing the effective capacity does not influ-
ence the performance much. This is because these applica-
tions tend to have a relatively long reuse distance.

The 26 applications are divided into four groups based
on their block utilization and L2 MPKI of the baseline
configuration as shown in Table 6.

Fragmentation. Fine-grained caches can have fragmenta-
tion. On misses, fragmentation can cause evictions when the
cache set still has enough space. Amoeba cache has this issue
due to its adjustable size of the block and T-bitmap mapping.
Elastic cache has this issue due to its unmatched number of
shared tag and private tag. Scrabble cache also has a similar
issue. However, Scrabble can support variable size of merged
block and allocate non-contiguous space for one merged
block, which can effectively mitigate the fragmentation issue
(Fig. 10).

As shown in Fig. 12, low block utilization groups A and B
can significantly reduce global miss ratio. However, existing
fine-grained caches have more than 20 percent of cache
misses that cause evictions due to fragmentation. Scrabble
can reduce these evictions to 12 and 9 percent for group A
and B respectively. This helps to further increase the cache
effective capacity and reduce data movement. For Group C
and D, the global miss ratio is not reduced as much as it is
in group A and B, because these applications have a rela-
tively high block utilization. However, the percentage of
fragmentation can still be reduced by Scrabble. As a result,
Scrabble cache can mitigate the fragmentation issue by allo-
cating non-contiguous space for one merged block.

Speedup Contribution. To analyze the performance impact of
each of Scrabble cache modifications, Fig. 11 shows the

TABLE 5
Overhead

Component Area
(um2)

Power
(mW)

Additional
Latency(ps)

Cache Logic

L1 Tag comparison 1163.8 11.7 0
L2 Tag comparison 8882.3 44.9 52.3
L1 Refill Logic 81.5 0.5 2.8
L2 Refill Logic 1415.3 0.6 21.4
Total (16L1s+L2) 30222.4 240.7

Component Area
(um2)

Power
(mW)

Latency
(ps)

Memory Controller (�4)
Spatial Pattern
Predictor

13844.8 14.1 182.8

Merge and Return
Logic

423.3 2.4 635.1

MSigns and Bitmaps 840 6.6 8.1
Merge Map 386.5 4.1 67.9
Total (�4) 61978.4 108.8

Fig. 8. Block utilization for both L1 and L2.

Fig. 9. L1 and L2 MPKI.

TABLE 6
Application Groups

GroupA (L2 MPKI < 10, block utilization% < 40%)
cholesky, dealII, gcc, gobmk, gups, miniAMR,
omnetpp, sjeng, water-nsquared, water-spatial, xalan

GroupB (L2 MPKI > 10, block utilization% < 40%)
art, HPCCG, mg, soplex, milc, ocean

GroupC (L2 MPKI < 10, block utilization% > 40%)
astar, fft, lu, radix, swim

GroupD (L2 MPK I> 10, block utilization% > 40%)
cg, lbm, libquantum, mcf

120 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 1, JANUARY 2020

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on February 26,2020 at 14:06:23 UTC from IEEE Xplore. Restrictions apply.

average speedup of adding each of the following features one
at a time: 1) index shifting, 2) permuted index- ing, 3) fixed
size merged block, 4) variable size merged block for L2, 5)
grouped line-fill, 6) optimized SPP, and 7)modified FR-FCFS.

Geo-mean result of the four groups (Table 6) is shown in
the Fig. 11. For all of the groups, shifting index towards left
hurts the performance, because using more significant bits
that have lower variations causes load imbalance issue
among cache sets. For applications with relatively higher
locality and high miss rate (Group D), changing the index
does not hurt the performance much. This is because these
applications tend to access memory densely but do not reuse
much. After XORing the shared tag with index, the original
data mapping is permuted. Most of the applications can
have more balanced cache sets. Only Group D have a
reduced performance, and it is because new set conflicts are
created after the permutation. Having a fixed merged block
and an SPP can effectively reduce the useless data stored in
the cache, the effective capacity can be significantly increased
for the applications that have low locality (Group A & B).
Therefore, the performance can be significantly improved.
However, for the applications with low miss rate (Group A
& C), merging has less speedup because these applications
are not sensitive to capacity increase. Variable size merged
block can further improve space utilization because it can
effectively solve the fragmentation issue. Grouped line-fill
can improve the performance by increasing the bandwidth
utilization of L2 line-fill. All of the blocks in the samemerged
block need to wait at the memory controller until the merged
block is ready to be grouped and filled into L2. However,
this additional latency does not hurt the performance much

as shown in the Fig. 11. Optimized SPP has more perfor-
mance improvement for applications with poor locality
(Group A & B) because improving the SPP accuracy can fur-
ther increase the effective capacity.Modified FR-FCFS priori-
tizes the memory requests in the transaction queue that have
been decided to be merged based on the merge logic. For
most of the applications, the performance are not changed
much. This is because Scrabble cache tends to merge partial
blocks in the same DRAM row, which does not affect the FR-
FCFS scheduling order for most of the cases.

Performance Comparison. A performance comparison of
Scrabble, other fine-grained caches, and the baseline is shown
in the Fig. 12a. Amoeba cache, mDSC, Elastic cache, the pro-
posed Scrabble cache with the fixed size of merged blocks,
and variable sizes of merged blocks can achieve on an aver-
age of 8.8, 3.7, 6.2, 10.2, and 16.7 percent of performance
improvement respectively as compared to baseline. Having
variable size of merged blocks can achieve better perfor-
mance because increased effective capacity. For applications
that have poor spatial locality (e.g., art, radix), the perfor-
mance improvements of Amoeba cache and Scrabble cache
are above 40 percent. Even for applications with high spatial
locality(e.g., cg, mcf), Scrabble cache achieves better perfor-
mance than other fine-grained caches do. This is because the
grouped line-fill can effectively increase the bandwidth utili-
zationwhenwritingmultiple blocks into the L2 cache.

6.3 Energy

Amoeba, mDSC, Elastic cache, and the proposed fine-
grained cache with fixed merged block and variable merged

Fig. 10. Fragmentation analysis.

Fig. 11. Speedup Contribution.

Fig. 12. Normalized performance, cache energy, and total on-chip energy comparison.

ZHANG ET AL.: SCRABBLE: A FINE-GRAINED CACHEWITH ADAPTIVE MERGED BLOCK 121

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on February 26,2020 at 14:06:23 UTC from IEEE Xplore. Restrictions apply.

blocks can reduce cache energy by 17.8, 15.2, 14.5, 19.0, and
24.3 percent respectively as shown in Fig. 12b and reduce the
total on-chip energy by 9.2, 5.5, 5.2, 10.1, and 11 percent
respectively as shown in Fig. 12c. Amoeba, mDSC, and Elas-
tic cache reduce the granularity of the cache blocks, thereby
reducing the cache energy by transferring and storing fewer
words. However, tag accesses in Amoeba cache need to go
through the data array, which costs more energy as com-
pared to accessing a dedicated tag array.Modified decoupled
sector cache uses a dedicated tag array but increases the size
of the tag and adds selection tag in the data array, which
increases power consumption. Elastic cache keeps fine-
grained memory accesses, which consumes more energy for
the applications that have good locality. For applications
such as art and radix, which have poor spatial locality, the
cache energy can be significantly reduced by these three fine-
grained caches. Scrabble cache has a dedicated tag array and
combines partial blocks at the memory controller. It can
adaptively change the size of the merged block to maximize
the space utilization and the data movement efficiency. In
addition, Scrabble cache achieves the best performance as
compared to other fine-grained caches. Grouped line-fill can
significantly improve the bandwidth utilization and reduce
control overhead. Therefore, Scrabble cache can reduce the
cache energy themost.

6.4 Effective Capacity

As mentioned in the Section 2.1, the effective capacity is
determined by both metadata overhead, data utilization,
and space utilization. For all of the fine-grained caches, they
increase the effective capacity improving one or multiple of
these three factors. The mDSC, Amoeba, Elastic and Scrab-
ble with fixed and variable merged blocks achieve an aver-
age of 1.75x, 1.91x, 1.93x, 2.34x, and 2.41x effective capacity
improvement (Fig. 13).

Metadata Overhead. In fine-grained caches, maintaining
smaller blocks typically requires a higher tag overhead as
compared to conventional caches. Amoeba cache needs a
word-sized tag even for the partial block that only has one
word. The data capacity percentage of Amoeba is the small-
est because the tag capacity is significantly increased when
the applications have poor locality. The mDSC have a
reduced data capacity as compared to the baseline because
the selection tags require additional space. Elastic cache
merges multiple fine-grained blocks, the data capacity is
higher than Amoeba cache has. In Elastic cache, the smallest
granularity is 16 B; whereas Scrabble support 8 B word gran-
ularity. The data capacity of Scrabble is similar to it is in the
Elastic cache. This is because the proposed fine-grained
cache carefully selects the private tag and index bits tomerge
asmany fine-grained blocks as possible into one block.

Data Utilization. The data utilization for all of the fine-
grained caches are improved as compared to it is in the

conventional caches. Amoeba and mDSC improved the data
utilization by adding a spatial pattern predictor to reduce
data over-fetching. However, they have to fetch contiguous
datawithin a physical block, which prevents further improve-
ment on the data utilization. Elastic cache has a reduced cache
block size to improve the data utilization. The proposed cache
has the best data utilization because the spatial pattern predic-
tor is optimized to support non-contiguous data fetching.

Space Utilization. For the conventional caches, the space
utilization is the highest, because both the tag array and data
array are equally partitioned to store fixed size blocks.
Amoeba cache has a relatively high space utilization because
each fine-grained block can be placed in any available space
in a set together with its tag. mDSC has a relatively low space
utilization because fine-grained blocks can be stored only in
space allocated to its corresponding sector. Elastic cache has
a low space utilization because the constraint on which fine-
grained blocks can be merged results in empty space in
merged blocks. Scrabble with fixed merged block has a rela-
tively high space utilization because the selection of private
tag and the index can allow more fine-grained blocks to be
merged. Moreover, having merged blocks with variable
length can further improve the space utilization as compared
to the fixed one does. This is because when there are not
enough blocks that can be merged, a small merged block is
used to avoidwasting space.

Control Overhead. The proposed fine-grained cache
merges different partial blocks into a merged block, then
transfers and stores them together. For writing into the L2
cache from the DRAM, a merged block usually contains
more data as compared to a single partial block does. An
average of 26.9, 26.6, and 12.2 Bytes of effective data in a
partial block are transferred respectively by each of the
Amoeba, mDSC, and Elastic cache L2 refill. Amoeba cache
and mDSC has similar effective data per block because they
used the same spatial pattern predictor. Elastic cache
increases the control overhead significantly by keeping
fixed fine-grained memory accesses. Scrabble cache trans-
fers an average of 34.5 Bytes per line-fill with a fixed merged
block size, and an average of 38.2 Bytes per line-fill with
variable merged block sizes. The control overhead of writ-
ing into the L2 cache is amortized by transferring more data
for each line fill. However, the proposed fine-grained cache
also introduces new control overhead. As mentioned in Sec-
tion 7.3, a partial block is read from L2 to L1. In the pro-
posed design, one physical block could be distributed into
different merged blocks. In this case, more control signals
will be generated. Fortunately, the cases that one physical
block is distributed into multiple merged blocks is less than
1 percent for the evaluated applications.

7 SENSITIVITY STUDY

7.1 Private Tag Length

As shown in the Fig. 14, the performance speedup becomes
saturated after the length of the private tag is increased to six
bits for both L1 and L2 caches. The space utilization is
increased when a longer private tag is used. This is because a
longer private tag implies a shorter shared tag, which reduces
the constraint on which fine-grained blocks can be merged.
However, a longer private tag increases the size of tag array

Fig. 13. Normalized effective capacity (GEO-MEAN).

122 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 1, JANUARY 2020

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on February 26,2020 at 14:06:23 UTC from IEEE Xplore. Restrictions apply.

and the access latency.When the private tag is longer than six
bits, L2 miss latency is increased from 4 cycles to 5 cycles.
Therefore, the length of the private tag is chosen to be six bits.

7.2 Spatial Pattern Prediction

A good spatial pattern predictor (SPP) should have a high
coverage and a high accuracy. Coverage is the number of
SPP hits divided by the total L2 misses. Accuracy is the num-
ber of correct predictions divided by the total predictions.
An incorrect prediction could lead to either partial block
miss (false negative) or over-fetch (false positive). Partial
block miss happens when the SPP predict to fetch part of the
block, however, words in the unfetched part of the block are
required. Partial block miss requires an additional fetch to
the same block. Over-fetch means some fetched words are
not used before eviction. Both scenarios increase the data
movement. Over-fetch wastes bandwidth and cache space,
while the partial blockmiss leads to latency and energy over-
head. In this section, the region size, update policy, pattern
representation, and accuracy of SPP are studied.

7.2.1 Region Size

The proposed SPP table is a 128-set, 8-way cache indexed by
the MSB of the regionID (similar with Amoeba cache [8]).
The region size can influence the SPP efficiency. For the
same prediction table size, a larger region leads to a higher
coverage. However, the same spatial pattern is less likely to
be shared across a large region. Using a large region size
can increase the inaccurate prediction. The proposed design
chooses a 4 KB region size because it leads to the highest
system speed up and the second highest bandwidth reduc-
tion as shown in Fig. 15a.

7.2.2 Update Policy

When a merged block is evicted from the L1 cache, its access
pattern needs to be recorded in the SPP. If the region
address for the evicted block miss in the SPP, an SPP line is
allocated. If the region address hits, two different update
policy can be applied. One is to replace the previous pattern

with the new pattern for the same region, the other is to
apply a bitwise OR of the new pattern and the existing pat-
tern. SPP design in Amoeba cache uses the bitwise-OR
approach. Results show that, for the proposed cache, replac-
ing the previous pattern with the new pattern has 1.167�
speedup and 44.29 percent higher bandwidth reduction as
compared to baseline, which has 3.3 percent more speedup
and 7.89 percent more bandwidth reduction as compared to
bit-wise OR approach. This is because adding different pat-
terns together for the same region and fetch them all will
increase the bandwidth consumption and pollute the cache
due to over-fetch. Experiment results show that the bit-wise
OR approach will lead to 26 percent more over-fetch while
reduce only 1.5 percent partial miss. Therefore, Scrabble
chooses the replacement approach when updating the spa-
tial pattern predictor.

7.2.3 Pattern Representation

In the proposed SPP design, bitmaps are used to record the
spatial pattern information. This is different from the SPP
design in Amoeba cache, where saturation counters are
used to indicate the start and end point of a spatial pattern.
Amoeba cache only predicts and fetch consecutive words,
while the proposed design can predict and fetch any words
in a block, which can save bandwidth and improve the sys-
tem performance. The Amoeba cache has a 32.16 percent
bandwidth reduction and has a 1.122 � speedup compared
to the baseline, while Scrabble reduces 44.29 percent band-
width and has a 1.167� speedup as compared to the
baseline.

7.2.4 Accuracy Analysis

As shown in Fig. 16, the proposed SPP takes around 70 mil-
lion cycles to warm-up, which is about 5 percent of the
application executing time (average execution time is 1.5 bil-
lion cycles). SPP partial miss, which can decrease the perfor-
mance, reduces to less than 4 percent after 40 million cycles.
The SPP has an overall of 64.4 percent average accuracy,
where the prediction is exactly correct. There are 32.4 per-
cent cases, where some unused data is fetched. After warm-
up, the average SPP hit rate is around 90 percent. When SPP
miss occurs, the entire physical block is requested.

7.3 Data Movement Between L1 and L2

In the proposed design, data movement between a private
L1 cache and a shared L2 cache is at the granularity of a
physical block instead of an entire merged block. An exam-
ple is shown in Fig. 17. Word A, B, C, D in physical block 1
are distributed into multiple merged blocks in the L2 cache.

Fig. 16. SPP accuracy and warm-up time.

Fig. 15. Comparison of different design choice for SPP and data move-
ment between L1 and L2.

Fig. 14. Comparison of different private tag length.

ZHANG ET AL.: SCRABBLE: A FINE-GRAINED CACHEWITH ADAPTIVE MERGED BLOCK 123

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on February 26,2020 at 14:06:23 UTC from IEEE Xplore. Restrictions apply.

If the requested word A misses in L1 and hits in L2, �1 all of
the words belonging to physical block 1 (L2 block hit) will
be moved to L1 together. The number of words to be moved
is a physical block is typically fewer than it is in a merged
block. Fig. 15d shows a comparison between moving the
physical block and merged block. Moving physical block
provides the opportunity for future merged block refill. As
shown in Fig. 17, if word E in physical block 2 misses in L1
later, �2 E and F are moved to L1 together. In this case, mov-
ing physical block can put A, B, C, D, E, F in the same L1
merged block. Since cache lookup among different blocks in
the same cache set happens in parallel, finding words from
the same a physical block does not cost additional latency.
Therefore, the proposed design choose to move physical
blocks between L1 and L2. Both L1 and L2 are write-back
caches. When a merged block gets evicted from the L1
cache, instead of writing back the entire merged block, the
proposed design only write back dirty physical blocks
within the merged block in order to save bandwidth for the
system that has fine-grained DRAM [36], [37]. In the pro-
posed design, each merged block is composed of up to eight
physical blocks. To support the partial write back for each
physical block, 56 additional dirty bits per set are needed.

7.4 Last Level Cache Sizes

The proposed cache organization is applicable to mobile
platform, which tends to have more cores with a relatively
smaller LLC due to the area and energy constraint [38]. This
section presents the performance of scrabble cache on sys-
tems with smaller LLC. As shown in the Fig. 18, for most of
the evaluated fine-grained caches, the performance improve-
ment are greater when the system has only 1 MB or 2 MB L2.
This is because improving the cache capacity can be more
effective when the application working sets do not fit in the
cache. Some of the evaluated benchmarks have relatively
small working sets. When the last level cache of the baseline
has a large capacity, the working sets can already fit in and
hence do not benefit from increasing the effective capacity.

There are many applications that are not cache capacity
sensitive. Improving the cache effective capacity doesn’t

help much on those applications. Therefore, in the general
purpose CPU design, it is difficult to achieve more than
30 percent of average performance improvement. A perfor-
mance upper bound for fine-grained caches is estimated by
increasing the cache capacity to hold equivalent data of 100
percent space utilization of the baseline cache, in which the
tag array is compressed using the C-PACK+Z algorithm [13],
[39]. As shown in Fig. 18, Scrabble cache has the highest
speedup and is close to the upper bound.

8 CONCLUSION

In this paper, a new fine-grained cache, Scrabble, is pro-
posed, which improves effective cache capacity by co-opti-
mizing metadata overhead, data utilization, and space
utilization. The effective capacity is significantly improved
as compared to other fine-grained caches. Scrabble cache
also uses grouped line-fill and optimized spatial pattern pre-
dictors to reduce control overhead and improve data move-
ment efficiency. As a result, scrabble cache achieves better
performance and lower energy consumption.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation at Lehigh University under Grant CCF-
1750826. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the
authors and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES

[1] J. B. Rothman and A. J. Smith, “Sector cache design and perform-
ance,” in Proc. 8th Int. Symp. Model. Anal. Simul. Comput. Telecom-
mun. Syst., 2000, pp. 124–133.

[2] M. K. Qureshi, M. A. Suleman, and Y. N. Patt, “Line distillation:
Increasing cache capacity by filtering unused words in cache
lines,” in Proc. IEEE 13th Int. Symp. High Perform. Comput. Archit.,
Feb. 2007, pp. 250–259.

[3] A. Seznec, “Decoupled sectored caches: Conciliating low tag
implementation cost,” in Proc. 21st Annu. Int. Symp. Comput.
Archit., 1994, pp. 384–393.

[4] P. Pujara and A. Aggarwal, “Increasing the cache efficiency by
eliminating noise,” in Proc. 12th Int. Symp. High-Perform. Comput.
Archit., 2006, pp. 145–154.

[5] A. V. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji,
“Adapting cache line size to application behavior,” in Proc. 13th
Int. Conf. Supercomputing, 1999, pp. 145–154.

[6] D. Sanchez and C. Kozyrakis, “Scalable and efficient fine-grained
cache partitioning with vantage,” IEEE Micro, vol. 32, no. 3,
pp. 26–37, May/Jun. 2012.

[7] C.-C. Huang and V. Nagarajan, “Increasing cache capacity via
critical-words-only cache,” in Proc. 32nd IEEE Int. Conf. Comput.
Des., 2014, pp. 125–132.

[8] S. Kumar, H. Zhao, A. Shriraman, E. Matthews, S. Dwarkadas,
and L. Shannon, “Amoeba-cache: Adaptive blocks for eliminating
waste in the memory hierarchy,” in Proc. 45th Annu. IEEE/ACM
Int. Symp. Microarchitecture, 2012, pp. 376–388.

[9] B. Li, J. Sun, M. Annavaram, and N. S. Kim, “Elastic-cache: GPU
cache architecture for efficient fine-and coarse-grained cache-line
management,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.,
2017, pp. 82–91.

[10] L. Li, A. B. Hayes, S. L. Song, and E. Z. Zhang, “Tag-split cache for
efficient GPGPU cache utilization,” in Proc. Int. Conf. Supercomput-
ing, 2016, Art. no. 43.

[11] H. Guo, L. Huang, Y. L€u, S. Ma, and Z. Wang, “Dycache: Dynamic
multi-grain cache management for irregular memory accesses on
GPU,” IEEE Access, vol. 6, pp. 38881–38891, 2018.

Fig. 17. An example of data movement between L1 and L2.

Fig. 18. Speedup on different LLC sizes.

124 IEEE TRANSACTIONS ON COMPUTERS, VOL. 69, NO. 1, JANUARY 2020

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on February 26,2020 at 14:06:23 UTC from IEEE Xplore. Restrictions apply.

[12] C. F. Chen, S.-H. Yang, B. Falsafi, and A. Moshovos, “Accurate
and complexity-effective spatial pattern prediction,” in Proc. 10th
Int. Symp. High Perform. Comput. Archit., 2004, pp. 276–287.

[13] S. Sardashti, A. Seznec, and D. A. Wood, “Skewed compressed
caches,” in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitec-
ture, 2014, pp. 331–342.

[14] S. Somogyi, T. F.Wenisch, A.Ailamaki, B. Falsafi, andA.Moshovos,
“Spatial memory streaming,” ACMSIGARCHComput. Archit. News,
vol. 34, pp. 252–263, 2006.

[15] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-
temporal memory streaming,” ACM SIGARCH Comput. Archit.
News, vol. 37, no. 3, pp. 69–80, 2009.

[16] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy,
“The directory-based cache coherence protocol for the dash
multiprocessor,” in Proc. 17th Annu. Int. Symp. Comput. Archit., 1990,
pp. 148–159.

[17] J. R. Goodman, “Using cache memory to reduce processor-
memory traffic,” ACM SIGARCH Comput. Archit. News, vol. 11,
no. 3, pp. 124–131, 1983.

[18] H. Zhao, A. Shriraman, S. Kumar, and S. Dwarkadas, “Protozoa:
Adaptive granularity cache coherence,” ACM SIGARCH Comput.
Archit. News, vol. 41, no. 3, pp. 547–558, 2013.

[19] Intel, “Intel Xeon Processor Scalable Family Datasheet,” 2019.
[Online]. Available: https://www.intel.com/content/www/us/
en/processors/xeon/scalable/xeon-scalable-datasheet-vol-1.html

[20] Samsung, “4 Gb D-die DDR4 SDRAM,” 2016. [Online]. Available:
http://www.samsung.com/semiconductor/global/file/product/
2016/03/DS_K4A4G085WD-B_Rev17-0.pdf

[21] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos, “SESC simu-
lator,” Jan. 2005. [Online]. Available: http://sesc.sourceforge.net

[22] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “CACTI 7: New tools for interconnect exploration
in innovative off-chip memories,” ACM Trans. Archit. Code Optimi-
zation, vol. 14, pp. 14:1–14:25, Jun. 2017.

[23] Cadence, “Cadence genus synthesis solution,” 2019. [Online]. Avail-
able: https://www.cadence.com/content/dam/cadencewww/
global/en US/documents/tools/digital-design-signoff/genus-
synthesis- solution- ds.pdf

[24] J. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. Davis,
P. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal,
“FreePDK: An open-source variation-aware design kit,” in Proc.
IEEE Int. Conf. Microelectronic Syst. Edu., Jun. 2007, pp. 173–174.

[25] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman, “AC-DIMM:
Associative computing with STT-MRAM,” in Proc. 40th Annu. Int.
Symp. Comput. Archit., 2013, pp. 189–200.

[26] A. KleinOsowski and D. J. Lilja, “Minnespec: A new SPEC
benchmark workload for simulation-based computer architec-
ture research,” IEEE Comput. Archit. Lett., vol. 1, no. 1, pp. 7–7,
Jan.-Dec. 2002.

[27] S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc.
42nd Annu. IEEE/ACM Int. Symp. Microarchitecture, Dec. 2009,
pp. 469–480.

[28] S. Hambrusch, T. Mudge, J. Clarke, K. Bannerjee, and P. Chi-ang,
“NSF workshop on emerging technologies for interconnects,”
Washington, DC, Feb. 2-3, 2012.

[29] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,
R. Rabenseifner, and D. Takahashi, “The HPC challenge (HPCC)
benchmark suite,” in Proc. 2006 ACM/IEEE Conf. Supercomputing,
vol. 213, Citeseer, 2006.

[30] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological con-
siderations,” in Proc. 22nd Annu. Int. Symp. Comput. Architecture,
1995, pp. 24–36.

[31] Standard Performance Evaluation Corporation, “SPECOMP2001,”
2001. [Online]. Available: https://www.spec.org/omp2001/

[32] Standard Performance Evaluation Corporation, “SPEC CPU2006,”
2006. [Online]. Available: https://www.spec.org/cpu2006/

[33] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski,
R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and
S. K. Weeratunga, “The NAS parallel benchmarks—summary and
preliminary results,” in Proc. ACM/IEEE Conf. Supercomputing,
1991, pp. 158–165.

[34] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring,
H. C. Edwards, A. Williams, M. Rajan, E. R. Keiter,
H. K. Thornquist, and R. W. Numrich, “Improving performance
via mini-applications,” Sandia National Laboratories, Albuquer-
que, NM, Tech. Rep. SAND2009–5574, 2009.

[35] A. A. Nair and L. K. John, “Simulation points for spec cpu 2006,”
in Proc. IEEE Int. Conf. Comput. Des., 2008, pp. 397–403.

[36] C. Zhang and X. Guo, “Enabling efficient fine-grained dram
activations with interleaved I/O,” in Proc. Int. Symp. Low Power
Electron. Des., Jul. 2017, pp. 1–6.

[37] Y. Lee and S. Kim, “Partial row activation for low-power DRAM
system,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit.,
2017, pp. 217–228.

[38] ARM, “Arm CortexA75 Core Technical Reference Manual,” 2018.
[Online]. Available: https://developer.arm.com/docs/100403/latest

[39] X. Chen, L. Yang, R. P. Dick, L. Shang, andH. Lekatsas, “C-Pack: A
high-performance microprocessor cache compression algorithm,”
IEEE Trans. Very Large Scale Integration Syst., vol. 18, no. 8,
pp. 1196–1208, Aug. 2010.

Chao Zhang received the BE degree in elec-
tronic science and technology from the University
of Electronic Science and Technology of China,
in 2016. He is working toward the PhD degree in
the Department of Electrical and Computer Engi-
neering, Lehigh University. He is a student mem-
ber of the IEEE.

Yuan Zeng received the BE degree in electronic
science and technology from Beijing Jiaotong
University, China, in 2015. She is working toward
the PhD degree in the Department of Electrical
and Computer Engineering, Lehigh University.
She is a student member of the IEEE.

Xiaochen Guo received the BE degree in com-
puter science and engineering from Beihang Uni-
versity, in 2009, and the MS and PhD degrees in
electrical and computer engineering from the Uni-
versity of Rochester, in 2011 and 2015. She is an
assistant professor with the Department of Elec-
trical and Computer Engineering, Lehigh Univer-
sity. Her research focuses on energy-efficient
computer architectures, feature-rich memories,
and computing platforms based on emerging
technologies. She is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHANG ET AL.: SCRABBLE: A FINE-GRAINED CACHEWITH ADAPTIVE MERGED BLOCK 125

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on February 26,2020 at 14:06:23 UTC from IEEE Xplore. Restrictions apply.

https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-datasheet-vol-1.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-datasheet-vol-1.html
http://www.samsung.com/semiconductor/global/file/product/2016/03/DS_K4A4G085WD-B_Rev17-0.pdf
http://www.samsung.com/semiconductor/global/file/product/2016/03/DS_K4A4G085WD-B_Rev17-0.pdf
http://sesc.sourceforge.net
https://www.cadence.com/content/dam/cadencewww/global/en US/documents/tools/digital-design-signoff/genus- synthesis- solution- ds.pdf
https://www.cadence.com/content/dam/cadencewww/global/en US/documents/tools/digital-design-signoff/genus- synthesis- solution- ds.pdf
https://www.cadence.com/content/dam/cadencewww/global/en US/documents/tools/digital-design-signoff/genus- synthesis- solution- ds.pdf
https://www.spec.org/omp2001/
https://www.spec.org/cpu2006/
https://developer.arm.com/docs/100403/latest

